Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
p-type Cr2MnO4 with bandgap 3.01 eV was sputter deposited onto (2¯01) and (001) n-type or semi-insulating β-Ga2O3.The heterojunction of p-type CrMnO4 on n-type Ga2O3 is found to be type II, staggered gap, i.e., the band offsets are such that both the conduction and valence band edges of Ga2O3 are lower in energy than those of the Cr2MnO4. This creates a staggered band alignment, which can facilitate the separation of photogenerated electron-hole pairs. The valence band edge of Cr2MnO4 is higher than that of Ga2O3 by 1.82–1.93 eV depending on substrate orientation and doping, which means that holes in Cr2MnO4 would have a lower energy barrier to overcome to move into Ga2O3. Conversely, the conduction band edge of Cr2MnO4 is higher than that of Ga2O3 by 0.13–0.30 eV depending on substrate doping and orientation, which would create a barrier for electrons in Ga2O3 to move into Cr2MnO4. This heterojunction looks highly promising for p-n junction formation for advanced Ga2O3-based power rectifiers.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Thermal annealing is commonly used in fabrication processing and/or performance enhancement of electronic and opto-electronic devices. In this study, we investigate an alternative approach, where high current density pulses are used instead of high temperature. The basic premise is that the electron wind force, resulting from the momentum loss of high-energy electrons at defect sites, is capable of mobilizing internal defects. The proposed technique is demonstrated on commercially available optoelectronic devices with two different initial conditions. The first study involved a thermally degraded edge-emitting laser diode. About 90% of the resulting increase in forward current was mitigated by the proposed annealing technique where very low duty cycle was used to suppress any temperature rise. The second study was more challenging, where a pristine vertical-cavity surface-emitting laser (VCSEL) was subjected to similar processing to see if the technique can enhance performance. Encouragingly, this treatment yielded a notable improvement of over 20% in the forward current. These findings underscore the potential of electropulsing as an efficient in-operando technique for damage recovery and performance enhancement in optoelectronic devices.more » « less
-
High-power electronics, such as GaN high electron mobility transistors (HEMTs), are expected to perform reliably in high-temperature conditions. This study aims to gain an understanding of the microscopic origin of both material and device vulnerabilities to high temperatures by real-time monitoring of the onset of structural degradation under varying temperature conditions. This is achieved by operating GaN HEMT devices in situ inside a transmission electron microscope (TEM). Electron-transparent specimens are prepared from a bulk device and heated up to 800 °C. High-resolution TEM (HRTEM), scanning TEM (STEM), energy-dispersive x-ray spectroscopy (EDS), and geometric phase analysis (GPA) are performed to evaluate crystal quality, material diffusion, and strain propagation in the sample before and after heating. Gate contact area reduction is visible from 470 °C accompanied by Ni/Au intermixing near the gate/AlGaN interface. Elevated temperatures induce significant out-of-plane lattice expansion at the SiNx/GaN/AlGaN interface, as revealed by geometry-phase GPA strain maps, while in-plane strains remain relatively consistent. Exposure to temperatures exceeding 500 °C leads to almost two orders of magnitude increase in leakage current in bulk devices in this study, which complements the results from our TEM experiment. The findings of this study offer real-time visual insights into identifying the initial location of degradation and highlight the impact of temperature on the bulk device’s structure, electrical properties, and material degradation.more » « less
-
Strain plays an important role in the performance and reliability of AlGaN/GaN high electron mobility transistors (HEMTs). However, the impact of strain on the performance of proton irradiated GaN HEMTs is yet unknown. In this study, we investigated the effects of strain relaxation on the properties of proton irradiated AlGaN/GaN HEMTs. Controlled strain relief is achieved locally using the substrate micro-trench technique. The strain relieved devices experienced a relatively smaller increase of strain after 5 MeV proton irradiation at a fluence of 5 × 1014 cm−2 compared to the non-strain relieved devices, i.e., the pristine devices. After proton irradiation, both pristine and strain relieved devices demonstrate a reduction of drain saturation current (Ids,sat), maximum transconductance (Gm), carrier density (ns), and mobility (μn). Depending on the bias conditions the pristine devices exhibit up to 32% reduction of Ids,sat, 38% reduction of Gm, 15% reduction of ns, and 48% reduction of μn values. In contrast, the strain relieved devices show only up to 13% reduction of Ids,sat, 11% reduction of Gm, 9% reduction of ns, and 30% reduction of μn values. In addition, the locally strain relieved devices show smaller positive shift of threshold voltage compared to the pristine devices after proton irradiation. The less detrimental impact of proton irradiation on the transport properties of strain relieved devices could be attributed to reduced point defect density producing lower trap center densities, and evolution of lower operation related stresses due to lower initial residual strain.more » « less
-
Abstract Radiation susceptibility of electronic devices is commonly studied as a function of radiation energetics and device physics. Often overlooked is the presence or magnitude of the electrical field, which we hypothesize to play an influential role in low energy radiation. Accordingly, we present a comprehensive study of low-energy proton irradiation on gallium nitride high electron mobility transistors (HEMTs), turning the transistor ON or OFF during irradiation. Commercially available GaN HEMTs were exposed to 300 keV proton irradiation at fluences varying from 3.76 × 1012to 3.76 × 1014cm2, and the electrical performance was evaluated in terms of forward saturation current, transconductance, and threshold voltage. The results demonstrate that the presence of an electrical field makes it more susceptible to proton irradiation. The decrease of 12.4% in forward saturation and 19% in transconductance at the lowest fluence in ON mode suggests that both carrier density and mobility are reduced after irradiation. Additionally, a positive shift in threshold voltage (0.32 V and 0.09 V in ON and OFF mode, respectively) indicates the generation of acceptor-like traps due to proton bombardment. high-resolution transmission electron microscopy and energy dispersive x-ray spectroscopy analysis reveal significant defects introduction and atom intermixing near AlGaN/GaN interfaces and within the GaN layer after the highest irradiation dose employed in this study. According toin-situRaman spectroscopy, defects caused by irradiation can lead to a rise in self-heating and a considerable increase in (∼750 times) thermoelastic stress in the GaN layer during device operation. The findings indicate device engineering or electrical biasing protocol must be employed to compensate for radiation-induced defects formed during proton irradiation to improve device durability and reliability.more » « less
-
Forward bias hole injection from 10-nm-thick p-type nickel oxide layers into 10-μm-thick n-type gallium oxide in a vertical NiO/Ga2O3 p–n heterojunction leads to enhancement of photoresponse of more than a factor of 2 when measured from this junction. While it takes only 600 s to obtain such a pronounced increase in photoresponse, it persists for hours, indicating the feasibility of photovoltaic device performance control. The effect is ascribed to a charge injection-induced increase in minority carrier (hole) diffusion length (resulting in improved collection of photogenerated non-equilibrium carriers) in n-type β-Ga2O3 epitaxial layers due to trapping of injected charge (holes) on deep meta-stable levels in the material and the subsequent blocking of non-equilibrium carrier recombination through these levels. Suppressed recombination leads to increased non-equilibrium carrier lifetime, in turn determining a longer diffusion length and being the root-cause of the effect of charge injection.more » « less
-
β-Ga2O3 has attracted much recent attention as a promising ultrawide bandgap semiconductor. Hydrogen can affect the conductivity of β-Ga2O3 through the introduction of shallow donors and the passivation of deep acceptors. The introduction of H or D into β-Ga2O3 by annealing in an H2 or D2 ambient at elevated temperature produces different classes of O–H or O–D centers. This work is a study of the interaction of D with VGa1 and VGa2 deep acceptors as well as other impurities and native defects in Ga2O3 by infrared spectroscopy and the complementary theory. (We focus primarily on the deuterium isotope of hydrogen because the vibrational modes of O–D centers can be detected with a higher signal-to-noise ratio than those of O–H.) O–D centers in β-Ga2O3 evolve upon annealing in an inert ambient and are transformed from one type of O–D center into another. These reactions affect the compensation of unintentional shallow donors by deep acceptors that are passivated by D. Defects involving additional impurities in β-Ga2O3 compete with VGa deep acceptors for D and modify the deuterium-related reactions that occur. The defect reactions that occur when D is introduced by annealing in a D2 ambient appear to be simpler than those observed for other introduction methods and provide a foundation for understanding the D-related reactions that can occur in more complicated situations.more » « less
-
In this work, we demonstrate the rejuvenation of Ti/4H-SiC Schottky barrier diodes after forward current-induced degradation, at room temperature and in a few seconds, by exploiting the physics of high-energy electron interactions with defects. The diodes were intentionally degraded to a 42% decrease in forward current and a 9% increase in leakage current through accelerated electrical stressing. The key feature of our proposed rejuvenation process is very high current density electrical pulsing with low frequency and duty cycle to suppress any temperature rise. The primary stimulus is, therefore, the electron wind force, which is derived from the loss of the momentum of the high energy electrons upon collision with the defects. Such defect-specific or “just in location” mobilization of atoms allows a significant decrease in defect concentration, which is not possible with conventional thermal annealing that requires higher temperatures and longer times. We show evidence of rejuvenation with additional improvement in leakage current (16%) and forward current (38%) beyond the pristine condition. Transmission electron microscopy, geometric phase analysis, Raman spectroscopy, and energy dispersive x-ray-spectroscopy reveal the enhancement of defects and interfaces. The ultrafast and room temperature process has the potential for rejuvenating electronic devices operating in high power and harsh environmental conditions.more » « less
-
There are numerous applications for deep UV AlGaN Light-Emitting Diodes (LEDs) in virus inactivation, air and water purification, sterilization, bioagent detection and UV polymer curing. The long-term stability of these LEDs is also of interest for long-duration space missions such as the Laser Interferometer Space Antenna (LISA), the first gravitational wave detector in space. We review the literature on long-term aging of these devices as a function of drive current, temperature and dc versus pulsed operation. The LEDs typically show a gradual decline in output power (up to 50%) over extended operating times (>100 h) and the rate of decline is mainly driven by current and temperature. Experimentally, the degradation rate is dependent on the cube of drive current density and exponentially on temperature. The main mechanism for this decline appears to be creation/migration of point defects. Pre-screening by considering the ratio of band edge-to-midgap emission and LED ideality factor is effective in identifying populations of devices that show long lifetimes (>10,000 h), defined as output power falling to 70% of the initial value.more » « less
-
While a number of O-H and O-D vibrational lines have been observed for hydrogen and deuterium in β-Ga2O3, it has been commonly reported that there is no absorption with a component of the polarization E parallel to the [010], or b, axis. This experimental result has led to O-H defect structures that involve shifted configurations of a vacancy at the tetrahedrally coordinated Ga(1) site [VGa(1)] and have ruled out structures that involve a vacancy at the octahedrally coordinated Ga(2) site [VGa(2)], because these structures are predicted to show absorption for E//[010]. In this Letter, weak O-D lines at 2475 and 2493 cm−1 with a component of their polarization with E//[010] are reported for β-Ga2O3 that had been annealed in a D2 ambient. O-D defect structures involving an unshifted VGa(2) are proposed for these centers. An estimate is made that the concentration of VGa(2) in a Czochralski-grown sample is 2–3 orders of magnitude lower than that of VGa(1) from the intensities of the IR absorption lines.more » « less
An official website of the United States government
